Soit $A = \begin{pmatrix} 0 & 8 \\ 1 & -7 \end{pmatrix}$. Montrer qu'il existe une matrice $B \in \mathcal{M}_2(\mathbb{R})$ telle que $B^3 = A$.

Exercice 2

Soit A une matrice carrée de taille n telle que $A^4 = I_n$ et $A^3 \neq A$. Montrer que A n'est pas diagonalisable.

Soit ϕ l'application qui à tout polynôme P(X) associe le polynôme $\phi(P) = P(X) - (X-1)P'(X) + \frac{(X-1)^2}{2}P''(X)$.

- 1) Pour tout entier positif n, montrer que ϕ définit un endomorphisme sur $\mathbb{R}_n[x]$. déterminer son noyau.
- 2) On se place dans cette question uniquement dans le cas n=2 :déterminer la matrice représentative de ϕ dans la base canonique de $\mathbb{R}_2[X]$.
- 3) En fonction de n, combien ϕ admet-il de valeurs propres distinctes?

Soit $n \in \mathbb{N}^*$ et soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que AB est diagonalisable.

- 1) Montrer que si A ou B est inversible, alors BA est diagonalisable.
- 2) Si A et B ne sont pas inversible, a-t-on toujours ce résultat?

Soit a un réel non nul et $A = \begin{pmatrix} 1 & a & a^2 \\ 1/a & 1 & a \\ 1/a^2 & 1/a & 1 \end{pmatrix}$.

1) Déterminer les valeurs propres et vecteurs propres de A. A est-elle diagonalisable?

On fixe un entier $n \ge 1$ et 2n réels a_1, \ldots, a_n et b_1, \ldots, b_n (certains d'entre eux peuvent être nuls). On note M la matrice $(a_ib_j)_{1 \le i,j \le n}$.

- 2) Montrer que M = A pour des paramètres n, a_i et b_j à préciser.
- 3) Donner les valeurs propres de M (et leur multiplicité) en fonction des a_i et des b_j dans le cas général, et indiquer une condition nécessaire et suffisante de diagonalisabilité de M.

On pose $E = \mathbb{R}_n[X]$ et on considère l'endomorphisme $f \in \mathcal{L}(E)$ défini par

$$\forall P \in \mathbb{R}_n[X], \quad f(P) = [(X^2 - 1)P']'$$

- 1) Calculer la matrice de f dans la base canonique.
- 2) Déterminer les valeurs propres de f.
- 3) Montrer que f est diagonalisable.

Exercice 7 -

Soit f un endomorphisme de $E = \mathbb{R}^n$ avec $n \ge 2$ tel que $\operatorname{rg}(f) \le 1$ et $f^3 + f = 0$.

- 1) Montrer que 0 est l'unique valeur propre de f.
- 2) On suppose que $f \neq 0_{\mathcal{L}(E)}$.
 - a) Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(f)$
 - b) En déduire une contradiction. Conclure.

Soit E un \mathbb{R} -espace vectoriel de dimension finie et $u \in \mathcal{L}(E)$ tel que $u^3 - 5u^2 + 6u = 0$. Étudier la diagonalisabilité de u.

* * * Exercice 9

Soit E un \mathbb{R} -espace vectoriel de dimension n et u un endomorphisme nilpotent de E, de rang n-1.

- 1) Montrer que pour tout $k \in [0, n]$, $0 \le \dim(\operatorname{Im}(u^k)) \dim(\operatorname{Im}(u^{k+1})) \le 1$ Indication : appliquer le théorème du rang à la restriction de u à $\operatorname{Im}(u^k)$
- 2) Montrer que s'il existe $k_0 \in [0, n-1]$ tel que $\operatorname{Ker}(u^{k_0}) = \operatorname{Ker}(u^{k_0+1})$, alors $\operatorname{Ker}(u^{k_0}) = E$.
- 3) En déduire que la suite $(\dim(\operatorname{Ker}(u^k)))_{0 \leq k \leq n}$ forme une suite strictement croissante, puis que $\dim(\operatorname{Ker}(u^k)) = k$ pour tout $k \in [0, n]$.
- 4) Montrer que les seuls sous-espaces vectoriels de E stables par u sont les $Ker(u^k)$ pour $k \in [0, n]$.

On appelle **matrice stochastique** une matrice carrée à coefficients positifs telle que la somme des coefficients de chaque ligne soit égale à 1.

$$A = (a_{i,j})_{1 \leq i,j \leq n} \text{ est une matrice stochastique si } \left\{ \begin{array}{c} \forall (i,j) \in \llbracket 1,n \rrbracket^2, \ a_{i,j} \geq 0 \\ \forall i \in \llbracket 1,n \rrbracket, \ \sum_{j=1}^n a_{i,j} = 1 \end{array} \right.$$

- 1) Montrer que si A, B sont deux matrices stochastiques, alors AB est stochastique.
- 2) Montrer que si A est une matrice stochastique, alors 1 est valeur propre de A.
- 3) Montrer que toute valeur propre λ de A vérifie $|\lambda| \leq 1$

Soient A et B deux éléments de $\mathcal{M}_n(\mathbb{R})$, et I la matrice identité de taille n.

- 1) Montrer que s'il existe $\alpha \in \mathbb{R}$ tel que $AB BA = \alpha I$, alors A et B commutent.
- 2) Soit $W \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1.
 - a) Montrer que si W est diagonalisable, alors $tr(W) \neq 0$
 - b) Montrer que si $tr(W) \neq 0$, alors W est diagonalisable.
 - c) Montrer que si la trace de W est nulle, alors $W^2 = 0$
- 3) On suppose que V = AB BA est de rang 1. Montrer que pour tout entier k, $VA^kV = 0$. On pourra commencer par montrer que $(VA^k)^2 = 0$.

Le coin des khûbes

Exercice 12

(D'après ESCP 2024)

Soit E un \mathbb{R} -espace vectoriel. On note Id_E l'application identité de E.

- 1) Soit p un projecteur de E, c'est à dire un endomorphisme de E tel que $p \circ p = p$.
 - a) Montrer que $Im(p) = Ker(p Id_E)$
 - b) Déterminer les valeurs propres de p.
- 2) Soit p et q deux projecteurs de E tels que $p \circ q = q \circ p$. On pose f = p + q.
 - a) Déterminer $f^3 3f^2 + 2f$.
 - b) En déduire les valeurs propres possibles de f.
- 3) a) Montrer que 0 est valeur propre de f si et seulement si $\operatorname{Ker}(p) \cap \operatorname{Ker}(q) \neq \{0_E\}$.
 - b) Montrer que 2 est valeur propre de f si et seulement si $\text{Im}(p) \cap \text{Im}(q) \neq \{0_E\}$.

* * Exercice 13

Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que AB - BA = A

- 1) Pour tout $k \in \mathbb{N}$, montrer l'égalité $A^k B B A^k = k A^k$
- 2) L'ensemble des matrices nilpotentes forme-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?
- 3) Montrer que A est nilpotente en étudiant l'application $\varphi: \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}), M \mapsto MB BM$.

Soit E un \mathbb{R} -espace vectoriel de dimension finie et a et b deux réels **distincts**. on note Id_E l'application identité de E. Dans tout l'exercice, f désigne un endomorphisme de E vérifiant :

$$f^2 - (a+b)f + ab\mathrm{Id}_E = 0 \tag{1}$$

- 1) Quelles sont les homothéties vérifiant la relation (1)?
- 2) a) Déterminer une condition suffisante portant sur les deux réels a et b pour que f soit bijective. Calculer alors f^{-1} .
 - b) On suppose que f n'est pas une homothétie. Déterminer une condition nécessaire et suffisante portant sur les deux réels a et b pour que f soit un projecteur.

On suppose désormais que f n'est \mathbf{pas} une homothétie.

- 3) a) Déterminer deux réels λ et μ tels que $f = \lambda(f a\mathrm{Id}_E) + \mu(f b\mathrm{Id}_E)$
 - b) En déduire qu'il existe deux projecteurs p et q tels que f = bp + aq et $p \circ p = p \circ q = 0$
- 4) On suppose désormais que a et b sont non nuls. Montrer que pour tout $n \in \mathbb{N}$, on a :

$$f^n = b^n p + a^n q \tag{2}$$

Pour tout entier n > 0 si f est bijective, on définit f^{-n} par $f^{-n} = (f^{-1})^n$. La relation (2) est-elle vérifiée pour tout $n \in \mathbb{Z}$?

Soit E un \mathbb{R} -espace vectoriel de dimension fini.

- 1) Soit u un endomorphisme diagonalisable de E. Montrer que si F est un sous-espace vectoriel de E stable par u, alors $u_{|F}$ est diagonalisable.
- 2) Soient u et v deux endomorphismes diagonalisables de E qui commutent. Montrer que u et v possèdent une base commune de diagonalisation, c'est à dire qu'il existe une base \mathcal{B} telle que $\mathrm{Mat}_{\mathcal{B}}(u)$ et $\mathrm{Mat}_{\mathcal{B}}(v)$ sont toutes deux diagonales.
- 3) Soit f un endomorphisme inversible de E tel que f^2 et f^3 sont diagonalisables. Montrer que f est diagonalisable.

